Download Advanced Algebra II: Activities and Homework by KennyFelder PDF

By KennyFelder

Show description

Read or Download Advanced Algebra II: Activities and Homework PDF

Best algebra books

Advances in Hopf algebras (p. 326 missing)

This awesome reference covers subject matters resembling quantum teams, Hopf Galois concept, activities and coactions of Hopf algebras, spoil and crossed items, and the constitution of cosemisimple Hopf algebras.

Empowering Grandparents Raising Grandchildren: A Training Manual for Group Leaders (Springer Series on Lifestyles and Issues in Aging)

This handbook is a 14-session workshop designed to aid grandparents who're elevating their grandchildren on my own. crew leaders can revise and extend upon the topics awarded right here to slot the wishes in their specific paintings teams. a number of the major matters which are explored are: priceless assistance for grandparents on how you can converse successfully with their grandchildren on all issues starting from medicines and intercourse, to sexually transmitted ailments; supporting them how you can take care of loss and abandonment matters; assisting them strengthen and preserve vanity; facing precise habit difficulties; and acceptable methods of instilling and retaining principles in the house.

Lineare Algebra und Geometrie für Ingenieure: Eine anwendungsbezogene Einführung mit Übungen

Geometrisch anschauliche und anwendungsbezogene Darstellung mit zahlreichen praxisnahen Anwendungen sowie Übungen mit Lösungen.

Additional resources for Advanced Algebra II: Activities and Homework

Sample text

2, 4) (−1, 1) (0, 0) (1, 1) (2, 4) (4, −2) (1, −1) (0, 0) (1, 1) (4, 2) (2, π) (3, π) (4, π) (5, 1) (π, 2) (π, 3) (π, 4) (1, 5) ❊①❡r❝✐s❡ ✶✳✹✹ ▼❛❦❡ ✉♣ ❛ ❢✉♥❝t✐♦♥ ✐♥✈♦❧✈✐♥❣ ❛✳ ❲r✐t❡ t❤❡ s❝❡♥❛r✐♦✳ ♠✉s✐❝✳ ❨♦✉r ❞❡s❝r✐♣t✐♦♥ s❤♦✉❧❞ ❝❧❡❛r❧② t❡❧❧ ♠❡✖✐♥ ✇♦r❞s✖❤♦✇ ♦♥❡ ✈❛❧✉❡ ❞❡♣❡♥❞s ♦♥ ❛♥♦t❤❡r✳ ✷✶ ❜✳ ◆❛♠❡✱ ❛♥❞ ❝❧❡❛r❧② ❞❡s❝r✐❜❡✱ t✇♦ ✈❛r✐❛❜❧❡s✳ ■♥❞✐❝❛t❡ ✇❤✐❝❤ ✐s ❞❡♣❡♥❞❡♥t ❛♥❞ ✇❤✐❝❤ ✐s ✐♥❞❡♣❡♥❞❡♥t✳ ❝✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ s❤♦✇✐♥❣ ❤♦✇ t❤❡ ❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡ ❞❡♣❡♥❞s ♦♥ t❤❡ ✐♥❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡✳ ■❢ ②♦✉ ✇❡r❡ ❡①♣❧✐❝✐t ❡♥♦✉❣❤ ✐♥ ♣❛rts ✭❛✮ ❛♥❞ ✭❜✮✱ ■ s❤♦✉❧❞ ❜❡ ❛❜❧❡ t♦ ♣r❡❞✐❝t ②♦✉r ❛♥s✇❡r t♦ ♣❛rt ✭❝✮ ❜❡❢♦r❡ ■ r❡❛❞ ✐t✳ ❞✳ ❈❤♦♦s❡ ❛ s❛♠♣❧❡ ♥✉♠❜❡r t♦ s❤♦✇ ❤♦✇ ②♦✉r ❢✉♥❝t✐♦♥ ✇♦r❦s✳ ❊①♣❧❛✐♥ ✇❤❛t t❤❡ r❡s✉❧t ♠❡❛♥s✳ ❊①❡r❝✐s❡ ✶✳✹✺ ❍❡r❡ ✐s ❛♥ ❛❧❣❡❜r❛✐❝ ❣❡♥❡r❛❧✐③❛t✐♦♥✿ ❢♦r ❛♥② ♥✉♠❜❡r x ✱ x2 − ✷✺ = (x + 5) (x − 5)✳ ❛✳ P❧✉❣ x = 3 ✐♥t♦ t❤❛t ❣❡♥❡r❛❧✐③❛t✐♦♥✱ ❛♥❞ s❡❡ ✐❢ ✐t ✇♦r❦s✳ ❜✳ ✷✵ × ✷✵ ✐s ✹✵✵✳ ●✐✈❡♥ t❤❛t✱ ❛♥❞ t❤❡ ❣❡♥❡r❛❧✐③❛t✐♦♥✱ ❝❛♥ ②♦✉ ✜♥❞ ✶✺ × ✷✺ ✇✐t❤♦✉t ❛ ❝❛❧❝✉❧❛t♦r❄ ✭❉♦♥✬t ❥✉st ❣✐✈❡ ♠❡ t❤❡ ❛♥s✇❡r✱ s❤♦✇ ❤♦✇ ②♦✉ ❣♦t ✐t✦✮ ❊①❡r❝✐s❡ ✶✳✹✻ ❆♠② ❤❛s st❛rt❡❞ ❛ ❝♦♠♣❛♥② s❡❧❧✐♥❣ ❝❛♥❞② ❜❛rs✳ ❊❛❝❤ ❞❛②✱ s❤❡ ❜✉②s ❝❛♥❞② ❜❛rs ❢r♦♠ t❤❡ ❝♦r♥❡r st♦r❡ ❛♥❞ s❡❧❧s t❤❡♠ t♦ st✉❞❡♥ts ❞✉r✐♥❣ ❧✉♥❝❤✳ ❚❤❡ ❢♦❧❧♦✇✐♥❣ ❣r❛♣❤ s❤♦✇s ❤❡r ♣r♦✜t ❡❛❝❤ ❞❛② ✐♥ ▼❛r❝❤✳ ❋✐❣✉r❡ ✶✳✾ ❛✳ ❖♥ ✇❤❛t ❞❛②s ❞✐❞ s❤❡ ❜r❡❛❦ ❡✈❡♥❄ ❜✳ ❖♥ ✇❤❛t ❞❛②s ❞✐❞ s❤❡ ❧♦s❡ ♠♦♥❡②❄ ❊①❡r❝✐s❡ ✶✳✹✼ ❚❤❡ ♣✐❝t✉r❡ ❜❡❧♦✇ s❤♦✇s t❤❡ ❣r❛♣❤ ♦❢ r✐❣❤t ❢♦r❡✈❡r✳ y= √ x✳ ❚❤❡ ❣r❛♣❤ st❛rts ❛t (0, 0) ❛♥❞ ♠♦✈❡s ✉♣ ❛♥❞ t♦ t❤❡ ❈❍❆P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✷✷ ❋✐❣✉r❡ ✶✳✶✵ ❛✳ ❲❤❛t ✐s t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❣r❛♣❤❄ ❜✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ t❤❛t ❧♦♦❦s ❡①❛❝t❧② t❤❡ s❛♠❡✱ ❡①❝❡♣t t❤❛t ✐t st❛rts ❛t t❤❡ ♣♦✐♥t (−3, 1) ❛♥❞ ♠♦✈❡s ✉♣✲❛♥❞✲r✐❣❤t ❢r♦♠ t❤❡r❡✳ ❊①❡r❝✐s❡ ✶✳✹✽ ❚❤❡ ❢♦❧❧♦✇✐♥❣ ❣r❛♣❤ r❡♣r❡s❡♥ts t❤❡ ❣r❛♣❤ y = f (x)✳ ❋✐❣✉r❡ ✶✳✶✶ ❛✳ ❜✳ ❝✳ ❞✳ ❡✳ ■s ✐t ❛ ❢✉♥❝t✐♦♥❄ ❲❤② ♦r ✇❤② ♥♦t❄ ❲❤❛t ❛r❡ t❤❡ ③❡r♦s❄ ❋♦r ✇❤❛t x − values ✐s ✐t ♣♦s✐t✐✈❡❄ x − values ✐s ✐t ♥❡❣❛t✐✈❡❄ t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥ f (x)✳ ❖♥ ❋♦r ✇❤❛t ❇❡❧♦✇ ✐s t❤❛t s❛♠❡ ❣r❛♣❤✱ ❞r❛✇ t❤❡ ❣r❛♣❤ ♦❢ y = f (x) − 2✳ ✷✸ ❋✐❣✉r❡ ✶✳✶✷ ❢✳ ❇❡❧♦✇ ✐s t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥ f (x)✳ ❖♥ t❤❛t s❛♠❡ ❣r❛♣❤✱ ❞r❛✇ t❤❡ ❣r❛♣❤ ♦❢ y = −f (x)✳ ❋✐❣✉r❡ ✶✳✶✸ ❊①tr❛ ❝r❡❞✐t✿ ❍❡r❡ ✐s ❛ ❝♦♦❧ tr✐❝❦ ❢♦r sq✉❛r✐♥❣ ❛ ❞✐✣❝✉❧t ♥✉♠❜❡r✱ ✐❢ t❤❡ ♥✉♠❜❡r ✐♠♠❡❞✐❛t❡❧② ❜❡❧♦✇ ✐t ✐s ❡❛s② t♦ sq✉❛r❡✳ 2 2 ❙✉♣♣♦s❡ ■ ✇❛♥t t♦ ✜♥❞ ✸✶ ✳ ❚❤❛t✬s ❤❛r❞✳ ❇✉t ✐t✬s ❡❛s② t♦ ✜♥❞ ✸✵ ✱ t❤❛t✬s ✾✵✵✳ ◆♦✇✱ ❤❡r❡ ❝♦♠❡s t❤❡ tr✐❝❦✿ ❛❞❞ ✸✵✱ ❛♥❞ t❤❡♥ ❛❞❞ ✸✶✳ ✾✵✵ + ✸✵ + ✸✶ = ✾✻✶✳ ❚❤❛t✬s t❤❡ ❛♥s✇❡r✦ ✸✶ 2 = ✾✻✶✳ ❛✳ ❯s❡ t❤✐s tr✐❝❦ t♦ ✜♥❞ ✹✶2 ✳ ✭❉♦♥✬t ❥✉st s❤♦✇ ♠❡ t❤❡ ❛♥s✇❡r✱ s❤♦✇ ♠❡ t❤❡ ✇♦r❦✦✮ ❜✳ ❲r✐t❡ t❤❡ ❛❧❣❡❜r❛✐❝ ❣❡♥❡r❛❧✐③❛t✐♦♥ t❤❛t r❡♣r❡s❡♥ts t❤✐s tr✐❝❦✳ ✶✷ ✶✳✶✷ ▲✐♥❡s ❊①❡r❝✐s❡ ✶✳✹✾ ❨♦✉ ❤❛✈❡ ✩✶✺✵ ❛t t❤❡ ❜❡❣✐♥♥✐♥❣ ♦❢ t❤❡ ②❡❛r✳ ✭❈❛❧❧ t❤❛t ❞❛② ✏✵✑✳✮ ❊✈❡r② ❞❛② ②♦✉ ♠❛❦❡ ✩✸✳ ✶✷ ❚❤✐s ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✶✸✴✶✳✶✴❃✳ ❈❍❆P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✷✹ ❛✳ ❜✳ ❝✳ ❞✳ ❍♦✇ ♠✉❝❤ ♠♦♥❡② ❞♦ ②♦✉ ❤❛✈❡ ♦♥ ❞❛② ✶❄ ❍♦✇ ♠✉❝❤ ♠♦♥❡② ❞♦ ②♦✉ ❤❛✈❡ ♦♥ ❞❛② ✹❄ ❍♦✇ ♠✉❝❤ ♠♦♥❡② ❞♦ ②♦✉ ❤❛✈❡ ♦♥ ❞❛② ✶✵❄ ❍♦✇ ♠✉❝❤ ♠♦♥❡② ❞♦ ②♦✉ ❤❛✈❡ ♦♥ ❞❛② n❄ ❚❤✐s ❣✐✈❡s ②♦✉ ❛ ❣❡♥❡r❛❧ ❢✉♥❝t✐♦♥ ❢♦r ❤♦✇ ♠✉❝❤ ♠♦♥❡② ②♦✉ ❤❛✈❡ ♦♥ ❛♥② ❣✐✈❡♥ ❞❛②✳ ❡✳ ❍♦✇ ♠✉❝❤ ✐s t❤❛t ❢✉♥❝t✐♦♥ ❣♦✐♥❣ ✉♣ ❡✈❡r② ❞❛②❄ ❚❤✐s ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧✐♥❡✳ ❢✳ ●r❛♣❤ t❤❡ ❧✐♥❡✳ ❊①❡r❝✐s❡ ✶✳✺✵ ❨♦✉r ♣❛r❛❝❤✉t❡ ♦♣❡♥s ✇❤❡♥ ②♦✉ ❛r❡ ✷✱✵✵✵ ❢❡❡t ❛❜♦✈❡ t❤❡ ❣r♦✉♥❞✳ ✭❈❛❧❧ t❤✐s t✐♠❡ t = 0✳✮ ❚❤❡r❡❛❢t❡r✱ ②♦✉ ❢❛❧❧ ✸✵ ❢❡❡t ❡✈❡r② s❡❝♦♥❞✳ ✭◆♦t❡✿ ■ ❞♦♥✬t ❦♥♦✇ ❛♥②t❤✐♥❣ ❛❜♦✉t s❦②❞✐✈✐♥❣✱ s♦ t❤❡s❡ ♥✉♠❜❡rs ❛r❡ ♣r♦❜❛❜❧② ♥♦t r❡❛❧✐st✐❝✦✮ ❛✳ ❍♦✇ ❤✐❣❤ ❛r❡ ②♦✉ ❛❢t❡r ♦♥❡ s❡❝♦♥❞❄ ❜✳ ❍♦✇ ❤✐❣❤ ❛r❡ ②♦✉ ❛❢t❡r t❡♥ s❡❝♦♥❞s❄ ❝✳ ❍♦✇ ❤✐❣❤ ❛r❡ ②♦✉ ❛❢t❡r ✜❢t② s❡❝♦♥❞s❄ ❞✳ ❍♦✇ ❤✐❣❤ ❛r❡ ②♦✉ ❛❢t❡r t s❡❝♦♥❞s❄ ❚❤✐s ❣✐✈❡s ②♦✉ ❛ ❣❡♥❡r❛❧ ❢♦r♠✉❧❛ ❢♦r ②♦✉r ❤❡✐❣❤t✳ ❡✳ ❍♦✇ ❧♦♥❣ ❞♦❡s ✐t t❛❦❡ ②♦✉ t♦ ❤✐t t❤❡ ❣r♦✉♥❞❄ ❢✳ ❍♦✇ ♠✉❝❤ ❛❧t✐t✉❞❡ ❛r❡ ②♦✉ ❣❛✐♥✐♥❣ ❡✈❡r② s❡❝♦♥❞❄ ❚❤✐s ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧✐♥❡✳ ❇❡❝❛✉s❡ ②♦✉ ❛r❡ ❢❛❧❧✐♥❣✱ ②♦✉ ❛r❡ ❛❝t✉❛❧❧② ❣❛✐♥✐♥❣ ♥❡❣❛t✐✈❡ ❛❧t✐t✉❞❡✱ s♦ t❤❡ s❧♦♣❡ ✐s ♥❡❣❛t✐✈❡✳ ❣✳ ●r❛♣❤ t❤❡ ❧✐♥❡✳ ❊①❡r❝✐s❡ ✶✳✺✶ ▼❛❦❡ ✉♣ ❛ ✇♦r❞ ♣r♦❜❧❡♠ ❧✐❦❡ ❡①❡r❝✐s❡s ★✶ ❛♥❞ ★✷✳ ❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡s✱ ❛s ❛❧✇❛②s✳ ❇❡ ✈❡r② ❝❧❡❛r ❛❜♦✉t t❤❡ ✐♥❞❡♣❡♥❞❡♥t ❛♥❞ ▼❛❦❡ s✉r❡ t❤❡ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ t❤❡♠ ✐s ❧✐♥❡❛r✦ ❣❡♥❡r❛❧ ❡q✉❛t✐♦♥ ❛♥❞ t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧✐♥❡✳ ❊①❡r❝✐s❡ ✶✳✺✷ ❈♦♠♣✉t❡ t❤❡ s❧♦♣❡ ♦❢ ❛ ❧✐♥❡ t❤❛t ❣♦❡s ❢r♦♠ (1, 3) t♦ (6, ✶✽)✳ ❊①❡r❝✐s❡ ✶✳✺✸ ❋♦r ❡❛❝❤ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❞✐❛❣r❛♠s✱ ✐♥❞✐❝❛t❡ r♦✉❣❤❧② ✇❤❛t t❤❡ s❧♦♣❡ ✐s✳ ❋✐❣✉r❡ ✶✳✶✹✿ ❛✳ ●✐✈❡ t❤❡ ✷✺ ❋✐❣✉r❡ ✶✳✶✺✿ ❜✳ ❋✐❣✉r❡ ✶✳✶✻✿ ❝✳ ❈❍❆P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✷✻ ❋✐❣✉r❡ ✶✳✶✼✿ ❞✳ ❋✐❣✉r❡ ✶✳✶✽✿ ❡✳ ✷✼ ❋✐❣✉r❡ ✶✳✶✾✿ ❢✳ ❊①❡r❝✐s❡ ✶✳✺✹ ◆♦✇✱ ❢♦r ❡❛❝❤ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❣r❛♣❤s✱ ❞r❛✇ ❛ ❧✐♥❡ ✇✐t❤ r♦✉❣❤❧② t❤❡ s❧♦♣❡ ✐♥❞✐❝❛t❡❞✳ ❋♦r ✐♥st❛♥❝❡✱ ♦♥ t❤❡ ✜rst ❧✐tt❧❡ ❣r❛♣❤✱ ❞r❛✇ ❛ ❧✐♥❡ ✇✐t❤ s❧♦♣❡ ✷✳ ❋✐❣✉r❡ ✶✳✷✵✿ ❜✳ ❉r❛✇ ❛ ❧✐♥❡ ✇✐t❤ s❧♦♣❡ m= −1 2 ❈❍❆P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✷✽ ❋✐❣✉r❡ ✶✳✷✶✿ ❜✳ ❉r❛✇ ❛ ❧✐♥❡ ✇✐t❤ s❧♦♣❡ m= −1 2 ❋✐❣✉r❡ ✶✳✷✷✿ ❝✳ ❉r❛✇ ❛ ❧✐♥❡ ✇✐t❤ s❧♦♣❡ ♠ ❂ ✶ ❋♦r ♣r♦❜❧❡♠s ✼ ❛♥❞ ✽✱ • • • • • ❙♦❧✈❡ ❢♦r y✱ ❛♥❞ ♣✉t t❤❡ ❡q✉❛t✐♦♥ ✐♥ t❤❡ ❢♦r♠ y = ♠① + b ✭.

T ✐s♥✬t ❛❧r❡❛❞② ✐♥ t❤❛t ❢♦r♠✮ ■❞❡♥t✐❢② t❤❡ s❧♦♣❡ ■❞❡♥t✐❢② t❤❡ y ✲✐♥t❡r❝❡♣t✱ ❛♥❞ ❣r❛♣❤ ✐t ❯s❡ t❤❡ s❧♦♣❡ t♦ ✜♥❞ ♦♥❡ ♣♦✐♥t ♦t❤❡r t❤❛♥ t❤❡ ●r❛♣❤ t❤❡ ❧✐♥❡ ❊①❡r❝✐s❡ ✶✳✺✺ y = 3x − 2 ❙❧♦♣❡✿❴❴❴❴❴❴❴❴❴❴❴ y ✲✐♥t❡r❝❡♣t✿❴❴❴❴❴❴❴❴❴❴❴ ❖t❤❡r ♣♦✐♥t✿❴❴❴❴❴❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✺✻ 2y − x = 4 ❊q✉❛t✐♦♥ ✐♥ y = ♠① + b y ✲✐♥t❡r❝❡♣t ♦♥ t❤❡ ❧✐♥❡ ✷✾ ❙❧♦♣❡✿❴❴❴❴❴❴❴❴❴❴❴ n✲✐♥t❡r❝❡♣t✿❴❴❴❴❴❴❴❴❴❴❴ ❖t❤❡r ♣♦✐♥t✿❴❴❴❴❴❴❴❴❴❴❴ ✶✸ ✶✳✶✸ ❍♦♠❡✇♦r❦✿ ●r❛♣❤✐♥❣ ▲✐♥❡s ❊①❡r❝✐s❡ ✶✳✺✼ 2y + 7x + 3 = 0 ❛✳ ❜✳ ❝✳ ❞✳ ❡✳ ✐s t❤❡ ❡q✉❛t✐♦♥ ❢♦r ❛ ❧✐♥❡✳ P✉t t❤✐s ❡q✉❛t✐♦♥ ✐♥t♦ t❤❡ ✏s❧♦♣❡✲✐♥t❡r❝❡♣t✑ ❢♦r♠ y = ♠① + b s❧♦♣❡ ❂ ❴❴❴❴❴❴❴❴❴❴❴ ②✲✐♥t❡r❝❡♣t ❂ ❴❴❴❴❴❴❴❴❴❴❴ ①✲✐♥t❡r❝❡♣t ❂ ❴❴❴❴❴❴❴❴❴❴❴ ●r❛♣❤ ✐t✳ ❊①❡r❝✐s❡ ✶✳✺✽ ❚❤❡ ♣♦✐♥ts (5, 2) ❛♥❞ (7, 8) ❧✐❡ ♦♥ ❛ ❧✐♥❡✳ ❛✳ ❋✐♥❞ t❤❡ s❧♦♣❡ ♦❢ t❤✐s ❧✐♥❡ ❜✳ ❋✐♥❞ ❛♥♦t❤❡r ♣♦✐♥t ♦♥ t❤✐s ❧✐♥❡ ❊①❡r❝✐s❡ ✶✳✺✾ ❲❤❡♥ ②♦✉✬r❡ ❜✉✐❧❞✐♥❣ ❛ r♦♦❢✱ ②♦✉ ♦❢t❡♥ t❛❧❦ ❛❜♦✉t t❤❡ ✏♣✐t❝❤✑ ♦❢ t❤❡ r♦♦❢✖✇❤✐❝❤ ✐s ❛ ❢❛♥❝② ✇♦r❞ t❤❛t ♠❡❛♥s ✐ts s❧♦♣❡✳ ❨♦✉ ❛r❡ ❜✉✐❧❞✐♥❣ ❛ r♦♦❢ s❤❛♣❡❞ ❧✐❦❡ t❤❡ ❢♦❧❧♦✇✐♥❣✳ ❚❤❡ r♦♦❢ ✐s ♣❡r❢❡❝t❧② s②♠♠❡tr✐❝❛❧✳ ❚❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧❡❢t✲❤❛♥❞ s✐❞❡ ✐s ✳ ■♥ t❤❡ ❞r❛✇✐♥❣ ❜❡❧♦✇✱ t❤❡ r♦♦❢ ✐s t❤❡ t✇♦ t❤✐❝❦ ❜❧❛❝❦ ❧✐♥❡s✖t❤❡ ❝❡✐❧✐♥❣ ♦❢ t❤❡ ❤♦✉s❡ ✐s t❤❡ ❞♦tt❡❞ ❧✐♥❡ ✻✵✬ ❧♦♥❣✳ ❋✐❣✉r❡ ✶✳✷✸ ❛✳ ❲❤❛t ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ ♦❢ t❤❡ r♦♦❢ ❄ ❜✳ ❍♦✇ ❤✐❣❤ ✐s t❤❡ r♦♦❢ ❄ ❚❤❛t ✐s✱ ✇❤❛t ✐s t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ ❝❡✐❧✐♥❣ ♦❢ t❤❡ ❤♦✉s❡✱ str❛✐❣❤t ✉♣ t♦ t❤❡ ♣♦✐♥t ❛t t❤❡ t♦♣ ♦❢ t❤❡ r♦♦❢ ❄ ❝✳ ❍♦✇ ❧♦♥❣ ✐s t❤❡ r♦♦❢ ❄ ❚❤❛t ✐s✱ ✇❤❛t ✐s t❤❡ ❝♦♠❜✐♥❡❞ ❧❡♥❣t❤ ♦❢ t❤❡ t✇♦ t❤✐❝❦ ❜❧❛❝❦ ❧✐♥❡s ✐♥ t❤❡ ❞r❛✇✐♥❣ ❛❜♦✈❡❄ ❊①❡r❝✐s❡ ✶✳✻✵ y = 3x✱ ❡①♣❧❛✐♥ ✇❤② ✸ ✐s t❤❡ s❧♦♣❡✳ ✭❉♦♥✬t ❥✉st s❛② ✏❜❡❝❛✉s❡ ✐t✬s t❤❡ m + b✳✑ ❊①♣❧❛✐♥ ✇❤② ∆y ∆x ✇✐❧❧ ❜❡ ✸ ❢♦r ❛♥② t✇♦ ♣♦✐♥ts ♦♥ t❤✐s ❧✐♥❡✱ ❥✉st ❧✐❦❡ ✇❡ ❡①♣❧❛✐♥❡❞ ✇❤② b ✐s t❤❡ ②✲✐♥t❡r❝❡♣t✳✮ ■♥ t❤❡ ❡q✉❛t✐♦♥ y= ♠① ❝❧❛ss ✶✸ ❚❤✐s ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✶✽✴✶✳✷✴❃✳ ✐♥ ✐♥ ❈❍❆P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✸✵ ❊①❡r❝✐s❡ ✶✳✻✶ ❍♦✇ ❞♦ ②♦✉ ♠❡❛s✉r❡ t❤❡ ❤❡✐❣❤t ♦❢ ❛ ✈❡r② t❛❧❧ ♠♦✉♥t❛✐♥❄ ❨♦✉ ❝❛♥✬t ❥✉st s✐♥❦ ❛ r✉❧❡r ❞♦✇♥ ❢r♦♠ t❤❡ t♦♣ t♦ t❤❡ ❜♦tt♦♠ ♦❢ t❤❡ ♠♦✉♥t❛✐♥✦ ❙♦ ❤❡r❡✬s ♦♥❡ ✇❛② ②♦✉ ❝♦✉❧❞ ❞♦ ✐t✳ ❨♦✉ st❛♥❞ ❜❡❤✐♥❞ ❛ tr❡❡✱ ❛♥❞ ②♦✉ ♠♦✈❡ ❜❛❝❦ ✉♥t✐❧ ②♦✉ ❝❛♥ ❧♦♦❦ str❛✐❣❤t ♦✈❡r t❤❡ t♦♣ ♦❢ t❤❡ tr❡❡✱ t♦ t❤❡ t♦♣ ♦❢ t❤❡ ♠♦✉♥t❛✐♥✳ ❚❤❡♥ ②♦✉ ♠❡❛s✉r❡ t❤❡ ❤❡✐❣❤t ♦❢ t❤❡ tr❡❡✱ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ ②♦✉ t♦ t❤❡ ♠♦✉♥t❛✐♥✱ ❛♥❞ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ ②♦✉ t♦ t❤❡ tr❡❡✳ ❙♦ ②♦✉ ♠✐❣❤t ❣❡t r❡s✉❧ts ❧✐❦❡ t❤✐s✳ ❋✐❣✉r❡ ✶✳✷✹ ❍♦✇ ❤✐❣❤ ✐s t❤❡ ♠♦✉♥t❛✐♥❄ ❊①❡r❝✐s❡ ✶✳✻✷ ❚❤❡ ❢♦❧❧♦✇✐♥❣ t❛❜❧❡ ✭❛ ✏r❡❧❛t✐♦♥✱✑ r❡♠❡♠❜❡r t❤♦s❡❄✮ s❤♦✇s ❤♦✇ ♠✉❝❤ ♠♦♥❡② ❙❝r♦♦❣❡ ▼❝❉✉❝❦ ❤❛s ❜❡❡♥ ✇♦rt❤ ❡✈❡r② ②❡❛r s✐♥❝❡ ✶✾✾✾✳ ❨❡❛r ✶✾✾✾ ✷✵✵✵ ✷✵✵✶ ✷✵✵✷ ✷✵✵✸ ✷✵✵✹ ◆❡t ❲♦rt❤ ✩✸ ❚r✐❧❧✐♦♥ ✩✹✳✺ ❚r✐❧❧✐♦♥ ✩✻ ❚r✐❧❧✐♦♥ ✩✼✳✺ ❚r✐❧❧✐♦♥ ✩✾ ❚r✐❧❧✐♦♥ ✩✶✵✳✺ ❚r✐❧❧✐♦♥ ❚❛❜❧❡ ✶✳✽ ❛✳ ❜✳ ❝✳ ❞✳ ❍♦✇ ♠✉❝❤ ✐s ❛ tr✐❧❧✐♦♥✱ ❛♥②✇❛②❄ ●r❛♣❤ t❤✐s r❡❧❛t✐♦♥✳ ❲❤❛t ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❣r❛♣❤❄ ❍♦✇ ♠✉❝❤ ♠♦♥❡② ❝❛♥ ▼r✳ ▼❝❉✉❝❦ ❡❛r♥ ✐♥ ✷✵ ②❡❛rs ❛t t❤✐s r❛t❡❄ ❊①❡r❝✐s❡ ✶✳✻✸ ▼❛❦❡ ✉♣ ❛♥❞ s♦❧✈❡ ②♦✉r ♦✇♥ ✇♦r❞ ♣r♦❜❧❡♠ ✉s✐♥❣ s❧♦♣❡✳ ✸✶ ✶✳✶✹ ❈♦♠♣♦s✐t❡ ❋✉♥❝t✐♦♥s ✶✹ ❊①❡r❝✐s❡ ✶✳✻✹ ❨♦✉ ❛r❡ t❤❡ ❢♦r❡♠❛♥ ❛t t❤❡ ❙❡s❛♠❡ ❙tr❡❡t ◆✉♠❜❡r ❋❛❝t♦r②✳ ❆ ❤✉❣❡ ❝♦♥✈❡②♦r ❜❡❧t r♦❧❧s ❛❧♦♥❣✱ ❝♦✈❡r❡❞ ✇✐t❤ ❜✐❣ ♣❧❛st✐❝ ♥✉♠❜❡rs ❢♦r ♦✉r ❝✉st♦♠❡rs✳ ❨♦✉r t✇♦ ❜❡st ❡♠♣❧♦②❡❡s ❛r❡ ❑❛t✐❡ ❛♥❞ ◆✐❝♦❧❛s✳ ❇♦t❤ ♦❢ t❤❡♠ st❛♥❞ ❛t t❤❡✐r st❛t✐♦♥s ❜② t❤❡ ❝♦♥✈❡②♦r ❜❡❧t✳ ◆✐❝♦❧❛s✬s ❥♦❜ ✐s✿ ✇❤❛t❡✈❡r ♥✉♠❜❡r ❝♦♠❡s t♦ ②♦✉r st❛t✐♦♥✱ ❛❞❞ ✷ ❛♥❞ t❤❡♥ ♠✉❧t✐♣❧② ❜② ✺✱ ❛♥❞ s❡♥❞ ♦✉t t❤❡ r❡s✉❧t✐♥❣ ♥✉♠❜❡r✳ ❑❛t✐❡ ✐s s✉❜tr❛❝t ✶✵✱ ❛♥❞ s❡♥❞ t❤❡ r❡s✉❧t ♥❡①t ♦♥ t❤❡ ❧✐♥❡✳ ❍❡r ❥♦❜ ✐s✿ ✇❤❛t❡✈❡r ♥✉♠❜❡r ❝♦♠❡s t♦ ②♦✉✱ ❞♦✇♥ t❤❡ ❧✐♥❡ t♦ ❙❡s❛♠❡ ❙tr❡❡t✳ ❛✳ ❋✐❧❧ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ t❛❜❧❡✳ ❚❤✐s ♥✉♠❜❡r ❝♦♠❡s ❞♦✇♥ t❤❡ ❧✐♥❡ ✲✺ ✲✸ ✲✶ ✷ ✹ ✻ ✶✵ x 2x ◆✐❝♦❧❛s ❝♦♠❡s ✉♣ ✇✐t❤ t❤✐s ♥✉♠✲ ❜❡r✱ ❛♥❞ s❡♥❞s ✐t ❞♦✇♥ t❤❡ ❧✐♥❡ t♦ ❑❛t✐❡ ❑❛t✐❡ t❤❡♥ s♣✐ts ♦✉t t❤✐s ♥✉♠❜❡r ❚❛❜❧❡ ✶✳✾ ❜✳ ■♥ ❛ ♠❛ss✐✈❡ ❞♦✇♥s✐③✐♥❣ ❡✛♦rt✱ ②♦✉ ❛r❡ ❣♦✐♥❣ t♦ ✜r❡ ◆✐❝♦❧❛s✳ ❑❛t✐❡ ✐s ❣♦✐♥❣ t♦ t❛❦❡ ♦✈❡r ❜♦t❤ ❢✉♥❝t✐♦♥s ✭◆✐❝♦❧❛s✬s ❛♥❞ ❤❡r ♦✇♥✮✳ ❙♦ ②♦✉ ✇❛♥t t♦ ❣✐✈❡ ❑❛t✐❡ ❛ ♥✉♠❜❡r✱ ❛♥❞ s❤❡ ✜rst ❞♦❡s ◆✐❝♦❧❛s✬s ❢✉♥❝t✐♦♥✱ ❛♥❞ t❤❡♥ ❤❡r ♦✇♥✳ ❇✉t ♥♦✇ ❑❛t✐❡ ✐s ♦✈❡r✇♦r❦❡❞✱ s♦ s❤❡ ❝♦♠❡s ✉♣ ✇✐t❤ ❛ s❤♦rt❝✉t✿ ♦♥❡ ❢✉♥❝t✐♦♥ s❤❡ ❝❛♥ ❞♦✱ t❤❛t ❝♦✈❡rs ❜♦t❤ ◆✐❝♦❧❛s✬s ❥♦❜ ❛♥❞ ❤❡r ♦✇♥✳ ❲❤❛t ❞♦❡s ❑❛t✐❡ ❞♦ t♦ ❡❛❝❤ ♥✉♠❜❡r ②♦✉ ❣✐✈❡ ❤❡r❄ ✭❆♥s✇❡r ✐♥ ✇♦r❞s✳✮ ❊①❡r❝✐s❡ ✶✳✻✺ ❚❛②❧♦r ✐s ❞r✐✈✐♥❣ ❛ ♠♦t♦r❝②❝❧❡ ❛❝r♦ss t❤❡ ❝♦✉♥tr②✳ ❊❛❝❤ ❞❛② ❤❡ ❝♦✈❡rs ✺✵✵ ♠✐❧❡s✳ ❆ ♣♦❧✐❝❡♠❛♥ st❛rt❡❞ t❤❡ s❛♠❡ ♣❧❛❝❡ ❚❛②❧♦r ❞✐❞✱ ✇❛✐t❡❞ ❛ ✇❤✐❧❡✱ ❛♥❞ t❤❡♥ t♦♦❦ ♦✛✱ ❤♦♣✐♥❣ t♦ ❝❛t❝❤ s♦♠❡ ✐❧❧❡❣❛❧ ❛❝t✐✈✐t②✳ ❚❤❡ ♣♦❧✐❝❡♠❛♥ st♦♣s ❡❛❝❤ ❞❛② ❡①❛❝t❧② ✜✈❡ ♠✐❧❡s ❜❡❤✐♥❞ ❚❛②❧♦r✳ ▲❡t d ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s t❤❡② ❤❛✈❡ ❜❡❡♥ ❞r✐✈✐♥❣✳ ✭❙♦ ❛❢t❡r t❤❡ ✜rst ❞❛②✱ d = 1✳✮ ▲❡t T ❜❡ p ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s t❤❡ ♣♦❧✐❝❡♠❛♥ ❤❛s ❞r✐✈❡♥✳ t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s ❚❛②❧♦r ❤❛s ❞r✐✈❡♥✳ ▲❡t ❛✳ ❆❢t❡r t❤r❡❡ ❞❛②s✱ ❤♦✇ ❢❛r ❤❛s ❚❛②❧♦r ❣♦♥❡❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ❍♦✇ ❢❛r ❤❛s t❤❡ ♣♦❧✐❝❡♠❛♥ ❣♦♥❡❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ T (d) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s ❚❛②❧♦r ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ❤♦✇ ♠❛♥② ❞❛②s ❤❡ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❞✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ p (T ) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡ t❤❡ ♣♦❧✐❝❡♠❛♥ ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ❞✐st❛♥❝❡ t❤❛t ❚❛②❧♦r ❤❛s tr❛✈❡❧❡❞✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❡✳ ◆♦✇ ✇r✐t❡ t❤❡ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ p (T (d)) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s t❤❡ ♣♦❧✐❝❡✲ ♠❛♥ ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s ❤❡ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ❊①❡r❝✐s❡ ✶✳✻✻ ❘❛s❤♠✐ ✐s ❛ ❤♦♥♦r st✉❞❡♥t ❜② ❞❛②❀ ❜✉t ❜② ♥✐❣❤t✱ s❤❡ ✇♦r❦s ❛s ❛ ❤✐t ♠❛♥ ❢♦r t❤❡ ♠♦❜✳ ❊❛❝❤ ♠♦♥t❤ s❤❡ ❣❡ts ♣❛✐❞ ✩✶✵✵✵ ❜❛s❡✱ ♣❧✉s ❛♥ ❡①tr❛ ✩✶✵✵ ❢♦r ❡❛❝❤ ♣❡rs♦♥ s❤❡ ❦✐❧❧s✳ ❖❢ ❝♦✉rs❡✱ s❤❡ ❣❡ts ♣❛✐❞ ✐♥ ❝❛s❤✖❛❧❧ ✩✷✵ ❜✐❧❧s✳ ▲❡t k ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ♣❡♦♣❧❡ ❘❛s❤♠✐ ❦✐❧❧s ✐♥ ❛ ❣✐✈❡♥ ♠♦♥t❤✳ ▲❡t ♠ ❜❡ t❤❡ ❛♠♦✉♥t ♦❢ ♠♦♥❡② s❤❡ ✐s ♣❛✐❞ t❤❛t ♠♦♥t❤✱ ✐♥ ❞♦❧❧❛rs✳ ▲❡t ✶✹ ❚❤✐s b ❜❡ t❤❡ ♥✉♠❜❡r ♦❢ ✩✷✵ ❜✐❧❧s s❤❡ ❣❡ts✳ ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✵✾✴✶✳✶✴❃✳ ❈❍❆P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✸✷ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ m (k) t❤❛t t❡❧❧s ❤♦✇ ♠✉❝❤ ♠♦♥❡② ❘❛s❤♠✐ ♠❛❦❡s✱ ✐♥ ❛ ❣✐✈❡♥ ♠♦♥t❤✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ♣❡♦♣❧❡ s❤❡ ❦✐❧❧s✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ b (m) t❤❛t t❡❧❧s ❤♦✇ ♠❛♥② ❜✐❧❧s ❘❛s❤♠✐ ❣❡ts✱ ✐♥ ❛ ❣✐✈❡♥ ♠♦♥t❤✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞♦❧❧❛rs s❤❡ ♠❛❦❡s✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ b (m (k))❜ t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ❜✐❧❧s ❘❛s❤♠✐ ❣❡ts✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ♣❡♦♣❧❡ s❤❡ ❦✐❧❧s✳ ❞✳ ■❢ ❘❛s❤♠✐ ❦✐❧❧s ✺ ♠❡♥ ✐♥ ❛ ♠♦♥t❤✱ ❤♦✇ ♠❛♥② ✩✷✵ ❜✐❧❧s ❞♦❡s s❤❡ ❡❛r♥❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ❡✳ ■❢ ❘❛s❤♠✐ ❡❛r♥s ✶✵✵ ✩✷✵ ❜✐❧❧s ✐♥ ❛ ♠♦♥t❤✱ ❤♦✇ ♠❛♥② ♠❡♥ ❞✐❞ s❤❡ ❦✐❧❧❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ❊①❡r❝✐s❡ ✶✳✻✼ ▼❛❦❡ ✉♣ ❛ ♣r♦❜❧❡♠ ❧✐❦❡ ❡①❡r❝✐s❡s ★✷ ❛♥❞ ★✸✳ ❇❡ s✉r❡ t♦ t❛❦❡ ❛❧❧ t❤❡ r✐❣❤t st❡♣s✿ ❞❡✜♥❡ t❤❡ s❝❡♥❛r✐♦✱ ❞❡✜♥❡ ②♦✉r ✈❛r✐❛❜❧❡s ❝❧❡❛r❧②✱ ❛♥❞ t❤❡♥ s❤♦✇ t❤❡ ❢✉♥❝t✐♦♥s t❤❛t r❡❧❛t❡ t❤❡ ✈❛r✐❛❜❧❡s✳ ❚❤✐s ✐s ❥✉st ❧✐❦❡ t❤❡ ♣r♦❜❧❡♠s ✇❡ ❞✐❞ ❧❛st ✇❡❡❦✱ ❡①❝❡♣t t❤❛t ②♦✉ ❤❛✈❡ t♦ ✉s❡ t❤r❡❡ ✈❛r✐❛❜❧❡s✱ r❡❧❛t❡❞ ❜② ❛ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥✳ ❊①❡r❝✐s❡ ✶✳✻✽ f (x) = √ x+2 ✳ g (x) = x2 + x ✳ ❛✳ f (7) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ g (7) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ f (g (x)) =❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❞✳ f (f (x)) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❡✳ g (f (x)) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❢✳ g (g (x)) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❣✳ f (g (3)) =❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✻✾ h (x) = x − 5✳ h (i (x)) = x✳ ❈❛♥ ②♦✉ ✜♥❞ ✇❤❛t ❢✉♥❝t✐♦♥ i (x) ✐s✱ t♦ ♠❛❦❡ t❤✐s ❤❛♣♣❡♥❄ ✶✺ ✶✳✶✺ ❍♦♠❡✇♦r❦✿ ❈♦♠♣♦s✐t❡ ❋✉♥❝t✐♦♥s ❊①❡r❝✐s❡ ✶✳✼✵ ❆♥ ✐♥❝❤✇♦r♠ ✭❡①❛❝t❧② ♦♥❡ ✐♥❝❤ ❧♦♥❣✱ ♦❢ ❝♦✉rs❡✮ ✐s ❝r❛✇❧✐♥❣ ✉♣ ❛ ②❛r❞st✐❝❦ ✭❣✉❡ss ❤♦✇ ❧♦♥❣ t❤❛t ✐s❄✮✳ ❆❢t❡r t❤❡ ✜rst ❞❛②✱ t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞ ✭❧❡t✬s ❥✉st ❛ss✉♠❡ t❤❛t✬s ❛t t❤❡ ❢r♦♥t✮ ✐s ❛t t❤❡ ✸✧ ♠❛r❦✳ ❆❢t❡r t❤❡ s❡❝♦♥❞ ❞❛②✱ t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞ ✐s ❛t t❤❡ ✻✧ ♠❛r❦✳ ❆❢t❡r t❤❡ t❤✐r❞ ❞❛②✱ t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞ ✐s ❛t t❤❡ ✾✧ ♠❛r❦✳ ▲❡t h d ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s t❤❡ ✇♦r♠ ❤❛s ❜❡❡♥ ❝r❛✇❧✐♥❣✳ ✭❙♦ ❛❢t❡r t❤❡ ✜rst ❞❛②✱ ❜❡ t❤❡ ♥✉♠❜❡r ♦❢ ✐♥❝❤❡s t❤❡ ❤❡❛❞ ❤❛s ❣♦♥❡✳ ▲❡t t d = 1✳✮ ▲❡t ❜❡ t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ ✇♦r♠✬s t❛✐❧✳ ❛✳ ❆❢t❡r ✶✵ ❞❛②s✱ ✇❤❡r❡ ✐s t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ■ts t❛✐❧❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ h (d) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ✐♥❝❤❡s t❤❡ ❤❡❛❞ ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ❤♦✇ ♠❛♥② ❞❛②s t❤❡ ✇♦r♠ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❞✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ t (h) t❤❛t ❣✐✈❡s t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ t❛✐❧✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ ❤❡❛❞✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❡✳ ◆♦✇ ✇r✐t❡ t❤❡ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ t (h (d)) t❤❛t ❣✐✈❡s t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ t❛✐❧✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s t❤❡ ✇♦r♠ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ✶✺ ❚❤✐s ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✵✼✴✶✳✶✴❃✳ ✸✸ ❊①❡r❝✐s❡ ✶✳✼✶ ➣ ❚❤❡ ♣r✐❝❡ ♦❢ ❣❛s st❛rt❡❞ ♦✉t ❛t ✶✵✵ ✴❣❛❧❧♦♥ ♦♥ t❤❡ ✶st ♦❢ t❤❡ ♠♦♥t❤✳ ❊✈❡r② ❞❛② s✐♥❝❡ t❤❡♥✱ ✐t ❤❛s ➣ ❣♦♥❡ ✉♣ ✷ ✴❣❛❧❧♦♥✳ ▼② ❝❛r t❛❦❡s ✶✵ ❣❛❧❧♦♥s ♦❢ ❣❛s✳ ✭❆s ②♦✉ ♠✐❣❤t ❤❛✈❡ ❣✉❡ss❡❞✱ t❤❡s❡ ♥✉♠❜❡rs ❛r❡ ❛❧❧ ✜❝t✐♦♥❛❧✳✮ ▲❡t d ❡q✉❛❧ t❤❡ ❞❛t❡ ✭s♦ t❤❡ ✶st ♦❢ t❤❡ ♠♦♥t❤ ✐s ✶✱ ❛♥❞ s♦ ♦♥✮✳ ▲❡t ♦❢ ❣❛s✱ ✐♥ ❝❡♥ts✳ ▲❡t c g ❡q✉❛❧ t❤❡ ♣r✐❝❡ ♦❢ ❛ ❣❛❧❧♦♥ ❡q✉❛❧ t❤❡ t♦t❛❧ ♣r✐❝❡ r❡q✉✐r❡❞ t♦ ✜❧❧ ✉♣ ♠② ❝❛r✱ ✐♥ ❝❡♥ts✳ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ g (d) t❤❛t ❣✐✈❡s t❤❡ ♣r✐❝❡ ♦❢ ❣❛s ♦♥ ❛♥② ❣✐✈❡♥ ❞❛② ♦❢ t❤❡ ♠♦♥t❤✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ c (g) t❤❛t t❡❧❧s ❤♦✇ ♠✉❝❤ ♠♦♥❡② ✐t t❛❦❡s t♦ ✜❧❧ ✉♣ ♠② ❝❛r✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♣r✐❝❡ ♦❢ ❛ ❣❛❧❧♦♥ ♦❢ ❣❛s✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ c (g (d)) t❤❛t ❣✐✈❡s t❤❡ ❝♦st ♦❢ ✜❧❧✐♥❣ ✉♣ ♠② ❝❛r ♦♥ ❛♥② ❣✐✈❡♥ ❞❛② ♦❢ t❤❡ ♠♦♥t❤✳ ❞✳ ❍♦✇ ♠✉❝❤ ♠♦♥❡② ❞♦❡s ✐t t❛❦❡ t♦ ✜❧❧ ✉♣ ♠② ❝❛r ♦♥ t❤❡ ✶✶t❤ ♦❢ t❤❡ ♠♦♥t❤❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ➣ ❡✳ ❖♥ ✇❤❛t ❞❛② ❞♦❡s ✐t ❝♦st ✶✱✵✹✵ ✭♦t❤❡r✇✐s❡ ❦♥♦✇♥ ❛s ✩✶✵✳✹✵✮ t♦ ✜❧❧ ✉♣ ♠② ❝❛r❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ❊①❡r❝✐s❡ ✶✳✼✷ ▼❛❦❡ ✉♣ ❛ ♣r♦❜❧❡♠ ❧✐❦❡ ♥✉♠❜❡rs ✶ ❛♥❞ ✷✳ ❇❡ s✉r❡ t♦ t❛❦❡ ❛❧❧ t❤❡ r✐❣❤t st❡♣s✿ ❞❡✜♥❡ t❤❡ s❝❡♥❛r✐♦✱ ❞❡✜♥❡ ②♦✉r ✈❛r✐❛❜❧❡s ❝❧❡❛r❧②✱ ❛♥❞ t❤❡♥ s❤♦✇ t❤❡ ✭❝♦♠♣♦s✐t❡✮ ❢✉♥❝t✐♦♥s t❤❛t r❡❧❛t❡ t❤❡ ✈❛r✐❛❜❧❡s✳ ❊①❡r❝✐s❡ ✶✳✼✸ f (x) = x x2 +3x+4 ✳ ❋✐♥❞ f (g (x)) ✐❢.

Download PDF sample

Rated 4.52 of 5 – based on 34 votes